Abstract

Active learning (AL) has become a subject of active recent research both in industry and academia as an efficient approach for rapid design and discovery of novel chemicals, materials, and polymers. Herein, we have assessed the applicability of AL for the discovery of polymeric micelle formulations for poorly soluble drugs. We were motivated by the key advantages of this approach making it a desirable strategy for rational design of drug delivery systems due toto its ability to (i) employ relatively small datasets for model development, (ii) iterate between model development and model assessment using small external datasets that can be either generated in focused experimental studies or formed from subsets of the initial training data, and (iii) progressively evolve models towards increasingly more reliable predictions and the identification of novel chemicals with the desired properties. In this study, we compared various AL protocols for their effectiveness in finding biologically active molecules using synthetic datasets. We have investigated the dependency of AL performance on the size of the initial training set, the relative complexity of the task, and the choice of the initial training dataset. We found that AL techniques as applied to regression modeling offer no benefits over random search, while AL used for classification tasks performs better than models built for randomly selected training sets but still quite far from perfect. Using the best performing AL protocol,. Finally, the best performing AL approach was employed to discover and experimentally validate novel binding polymers for a case study of asialoglycoprotein receptor (ASGPR).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.