Abstract
To determine whether a CT-based machine learning (ML) can differentiate benign renal tumors from renal cell carcinomas (RCCs) and improve radiologists' diagnostic performance, and evaluate the impact of variable CT imaging phases, slices, tumor sizes, and region of interest (ROI) segmentation strategies. Patients with pathologically proven RCCs and benign renal tumors from our institution between 2008 and 2020 were included as the training dataset for ML model development and internal validation (including 418 RCCs and 78 benign tumors), and patients from two independent institutions and a public database (TCIA) were included as the external dataset for individual testing (including 262 RCCs and 47 benign tumors). Features were extracted from three-phase CT images. CatBoost was used for feature selection and ML model establishment. The area under the receiver operating characteristic curve (AUC) was used to assess the performance of the ML model. The ML model based on 3D images performed better than that based on 2D images, with the highest AUC of 0.81 and accuracy (ACC) of 0.86. All three radiologists achieved better performance by referring to the classifier's decision, with accuracies increasing from 0.82 to 0.87, 0.82 to 0.88, and 0.76 to 0.87. The ML model achieved higher negative predictive values (NPV, 0.82-0.99), and the radiologists achieved higher positive predictive values (PPV, 0.91-0.95). A ML classifier based on whole-tumor three-phase CT images can be a useful and promising tool for differentiating RCCs from benign renal tumors. The ML model also perfectly complements radiologist interpretations. • A machine learning classifier based on CT images could be a reliable way to differentiate RCCs from benign renal tumors. • The machine learning model perfectly complemented the radiologists' interpretations. • Subtle variances in ROI delineation had little effect on the performance of the ML classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.