The following article is based on a talk for Symposium X presented by Wolfgang Stoll, Chief Scientific Advisor and Consultant in Siemens, Germany, at the 1996 MRS Fall Meeting.Since 1941 when Glenn Seaborg first isolated plutonium in milligram quantities, the total amount converted through neutron capture in U-238 has increased worldwide to about 1,200 tons and continues to grow about 70 tons/year. What was fissioned in situ in operating nuclear power stations is roughly equivalent to 5 billion tons of black coal, while the fission energy contained in those 1,200 tons unloaded in spent fuel is equivalent to another 2 billion tons of coal. About 260 of these 1,200 tons are ready to release their energy in about 4 kg-portions each in microseconds which is equivalent to 10,000 tons of coal. Most people believe this release of energy poses a major threat of the worldwide arsenal of weapons of mass destruction (WMD). The about 20-fold overkill stored in worldwide WMD is considered superfluous after the crumbling of the Soviet Union. Options are sought to dispose of this surplus in a safe, speedy, and controllable manner. While for highly enriched uranium (HEU) (the other nuclear weapons material) dilution into low-enriched uranium and utilization in current light water reactors (LWR) poses market adaptation problems only, and while the worldwide consensus on the elimination of chemical and biological WMD is still in an initial phase, the decision of both the United States (US) and the former Soviet Union (FSU) to remove most of the plutonium out of weapons looks as if it was a firm political decision.
Read full abstract