Abstract

Behavior of irradiated fuel rods under power burst conditions by accidental reactivity insertion in light water reactors (LWRs) has been studied in the Nuclear Safety Research Reactor (NSRR). In the experiments, cladding hoop deformation, which reached up to about 10%, was much larger than that of the fresh rods. The current LWR fuel behavior analysis codes, which only take account of the thermal expansion of the fuel pellets for the deformation calculation, under-predicted the plastic deformation of the cladding to be less than about 1%. Fission gas release during the pulse irradiation tests reached as high as 22% in the NSRR irradiated fuel tests. In order to describe these test results, a model of grain boundary fission gases to cause the cladding deformation has been developed and installed in a fuel behavior simulation code, FRAP-T6. In the model, the over-pressurized gases by the pulse irradiation cause grain boundary separation and stress the cladding during the tests. The model assumes that the gases remain in the fuel during the early part of pulse irradiation and are released to the open volume in the rod after the cladding deformation. The model, in combination with a fuel thermal expansion model, GAPCON, which was validated through fresh fuel tests, reproduces the NSRR test results reasonably well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.