Abstract

Large-break loss-of-coolant accident (LOCA) was analyzed in the course of the design study concerning direct-cycle supercritical-pressure light water reactor (SCLWR). The advantages of SCLWR are a higher thermal efficiency and simpler reactor system than the current light water reactors (LWRs). A computer code was prepared for the analysis of the blowdown phase from the supercritical pressure. The calculation was connected to the REFLA-TRAC code when the system pressure decreased to around atmospheric pressure. The analyzed accidents are 100, 75, 50 and 25% cold-leg and 100% hot-leg breaks. First, blowdown and heatup phases without an emergency core cooling system (ECCS) were evaluated. A low-pressure coolant injection system (LPCI) was designed to fill the core with water before the cladding (stainless-steel) temperature reached a limit of 1260°C. The LPCI consists of four units, each of which has the capacity 805 kg/s. An automatic depressurization system (ADS) was designed to release the steam generated in the core in the case of cold-leg breaks and to permit operation of LPCI in the case of LOCAs of less than 100% break. For all cases analyzed, the peak cladding temperatures were lower than the limit when the designed ECCS is implemented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call