Abstract A facile and straightforward approach has been implemented for the synthesis of nanostructured Y2O3 particles via sol-gel method from yttrium nitrate solution. The individual effects of calcination temperature, precipitation-chelating agent and precursor concentration on microstructural parameters, crystal defects and morphology of Y 2O3 were investigated in detail. The morphology of synthesized nanostructured Y2O3 particles was revealed by scanning electron microscopy (SEM). X-ray diffraction (XRD) and Williamson Hall analysis were used to find out how Y2O3 crystallite size , lattice strain-stress, dislocation density and morphology affect the sol-gel process parameters. Comparative studies for determining crystallite size of particles were carried out by Modified Debye-Scherer and Williamson Hall analysis. A more detailed microstructural analysis and investigation of crystallographic imperfections were conducted by Williamson- Hall (W-H) method. W-H analysis was carried out on Y 2O3 particles with spherical shape and sponge morphology for the first time. Results reveal that as calcination temperature is increased from 700 °C to 900 °C, the crystallite size increases from 37.15 nm to 49.49 nm while lattice strain increases from 8.154 × 10−4 to 8.696 × 10−4. It is also found that, an increment in solution concentration from 0.1 mol/L to 0.2 mol/L results in crystallite size decrement from 47.27 nm to 44.37 nm. A further increment from 0.2 mol to 0.4 mol/L leads to crystallize size increase from 44.37 nm to 49.67 nm.