Abstract

We report the in situ synthesis of hydroxyapatite nanoparticles on 1–3 layers of colloidal collagen-graphene composites. Varying calcium and phosphate: graphene ratio two different composites were synthesized. Crystallite size, particle size and degree of crystallinity of hydroxyapatite nanoparticles changes with a change in graphene concentration. Transmission electron microscopy shows that these graphene composites change shape from spherical to elongated needle-like structures because of the varying nitrogen content in collagen-graphene. Fourier-transform Infrared Spectroscopy peaks suggests an interaction between calcium and the colloidal composites. X-ray Photo Electron spectroscopy data shows the interaction between graphene, collagen and hydroxyapatite through pyridinic N-oxide moiety. High-resolution lattice images confirm the co-existence of both graphene and hydroxyapatite. Anti-bacterial tests of the colloidal composites with two different bacteria S. Marcences and E. Coli show improved anti- bacterial property with increased graphene concentration. The colloidal composites were further electrospun into fibers, and their electrochemical stability in simulated body fluids estimated. The electrochemical test data show that the fiber made of composites would be extremely useful for biomedical applications such as internal bandages and burns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.