This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications. In photocatalysis, the ZnO NPs exhibited exceptional efficiency, achieving complete degradation of methylene blue within 15 min at pH 11, significantly surpassing the performance of commercial ZnO. Under neutral pH conditions, the nanoparticles effectively degraded various organic dyes, including methylene blue, rhodamine B, and methyl orange, following pseudo-first-order kinetics. The methylene blue degradation process was aligned with the Langmuir-Hinshelwood model, emphasizing their advanced catalytic properties. For supercapacitor applications, the ZnO NPs attained a high specific capacitance of 550 F/g at 1 A/g, underscoring their potential as energy storage solutions. Additionally, the nanoparticles demonstrated strong UV-induced antiradical activity, with an EC50 of 32.2 μg/mL in DPPH assays. Notably, the cytotoxicity evaluation revealed an LC50 of 1648 μg/mL, indicating excellent biocompatibility. This study highlights a sustainable approach for the synthesis of multifunctional ZnO NPs that offers effective solutions for environmental remediation, energy storage, and biomedical applications.
Read full abstract