The forecasts of local severe storms (LSS) are highly dependent on how well the pre-convection environment is characterized in the numerical weather prediction (NWP) model analysis. The usefulness of the forecasts is highly dependent on how frequently the forecast is updated. Therefore, the data latency is critical for assimilation into regional NWP models for it to be able to assimilate more data within the data cut-off window. These low latency data can be obtained through direct broadcast sites and direct receiving systems. Observing system experiments (OSE) were performed to study the impact of data latency on the LSS forecasts. The experiments assimilated all existing observations including conventional data (from the global telecommunication system, GTS) and satellite sounder radiance data (AMSU-A (The Advanced Microwave Sounding Unit-A), ATMS (Advanced Technology Microwave Sounder), CrIS (Cross-track Infrared Sounder), and IASI (Infrared Atmospheric Sounding Interferometer)). They were carried out in a nested domain with a horizontal resolution of 9 km and 3 km in the weather research and forecasting (WRF) model. The forecast quality scores of the LSS precipitation forecasts were calculated and compared with different data cut-off widows to evaluate the impact of data latency. The results showed that low latency can lead to an improved and positive impact on precipitation and other forecasts, which indicates the potential application of LEO direct broadcast (DB) data in a high-resolution regional NWP for LSS forecasts.