Abstract

Abstract. The Paris megacity experiences frequent particulate matter (i.e.PM2.5, particulate matter with a diameter less than 2.5 µm) pollution episodes in spring (March–April). At this time of the year, large numbers of the particles consist of ammonium sulfate and nitrate which are formed from ammonia (NH3) released during fertilizer spreading practices and transported from the surrounding areas to Paris. There is still limited knowledge of the emission sources around Paris, their magnitude, and their seasonality. Using space-borne NH3 observation records of 10 years (2008–2017) and 5 years (2013–2017) provided by the Infrared Atmospheric Sounding Interferometer (IASI) and the Cross-Track Infrared Sounder (CrIS) instrument, regional patterns of NH3 variabilities (seasonal and interannual) are derived. Observations reveal identical high seasonal variability with three major NH3 hotspots found from March to August. The high interannual variability is discussed with respect to atmospheric total precipitation and temperature. A detailed analysis of the seasonal cycle is performed using both IASI and CrIS instrument data, together with outputs from the CHIMERE atmospheric model. For 2014 and 2015, the CHIMERE model shows coefficients of determination of 0.58 and 0.18 when compared to IASI and CrIS, respectively. With respect to spatial variability, the CHIMERE monthly NH3 concentrations in spring show a slight underrepresentation over Belgium and the United Kingdom and an overrepresentation in agricultural areas in the French Brittany–Pays de la Loire and Plateau du Jura region, as well as in northern Switzerland. In addition, PM2.5 concentrations derived from the CHIMERE model have been evaluated against surface measurements from the Airparif network over Paris, with which agreement was found (r2 = 0.56) with however an underestimation during spring pollution events. Using HYSPLIT cluster analysis of back trajectories, we show that NH3 total columns measured in spring over Paris are enhanced when air masses originate from the north-east (e.g. the Netherlands and Belgium), highlighting the importance of long-range transport in the NH3 budget over Paris. Variability in NH3 in the north-east region is likely to impact NH3 concentrations in the Parisian region since the cross-correlation function is above 0.3 (at lag = 0 and 1 d). Finally, we quantify the key meteorological parameters driving the specific conditions important for the formation of PM2.5 from NH3 in the Île-de-France region in spring. Data-driven results based on surface PM2.5 measurements from the Airparif network and IASI NH3 measurements show that a combination of the factors such as a low boundary layer of ∼500 m, a relatively low temperature of 5 ∘C, a high relative humidity of 70 %, and wind from the north-east contributes to a positive PM2.5 and NH3 correlation.

Highlights

  • Ammonia (NH3) is an atmospheric pollutant and one of the main sources of reactive nitrogen in the atmosphere which is involved in numerous biogeochemical exchanges impacting all ecosystems (Sutton et al, 2013)

  • In this paper we study concentrations and spatiotemporal variability in atmospheric NH3 from the agricultural sector to gain insights on the effect of NH3 on megacity air quality using the following: (1) longterm satellite observations derived from Infrared Atmospheric Sounding Interferometer (IASI) (10 years from 2008 to 2017) and Cross-Track Infrared Sounder (CrIS) (5 years from 2013 to 2017) at the regional scale (400 km radius circle around the Paris city centre); (2) spatiotemporal patterns of the CHIMERE model evaluated against the IASI and CrIS datasets for 2014 and 2015; and (3) analysis of the main meteorological parameters that favour the formation of secondary PM2.5 from NH3 in the Paris megacity

  • This study focuses on seasonal and interannual variabilities in NH3 concentrations in a 400 km radius circle area around Paris to assess the evolution of major NH3 agricultural sources and its key role in the formation of the secondary aerosols that affect air quality over the Paris megacity

Read more

Summary

Introduction

Ammonia (NH3) is an atmospheric pollutant and one of the main sources of reactive nitrogen in the atmosphere which is involved in numerous biogeochemical exchanges impacting all ecosystems (Sutton et al, 2013). NH3 is a precursor of ammonium salts which can form up to 50 % of the mass of particulate matter (PM) (Behera et al, 2013) Large cities such as Paris (which is the most populated area in the European Union, with 10.5 million people when its larger metropolitan regions are included) typically experience strong PM pollution episodes in spring. These particles are known to be harmful to human health (Pope III et al, 2009), inducing 2000 deaths per year in the Paris megacity (Corso et al, 2016) and impacting the radiative budget of the Earth (Myhre et al, 2013). NH3 emissions are projected to increase in the future globally with increased population and food demand (van Vuuren et al, 2011), and NH3 volatilization will be enhanced with climate change (Sutton et al, 2013)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call