Crack growth mechanisms for Alloy 617 at 800 °C were investigated in air with specific emphasis on the transition from cycle-dependent to time-dependent crack growth mechanisms in the creep-fatigue regime. Crack growth studies were conducted using compact tension samples, a load ratio of 0.5, and triangular 5 Hz, 0.33 Hz, and 0.05 Hz waveforms, a trapezoidal 0.05 Hz waveform with 17 s hold time, and sustained loading. Fatigue crack growth rates were relatively insensitive to changes in frequency and hold times in air up to ∆K ≈ 11.5 MPa√m for R = 0.5, i.e, Kmax = 23 MPa√m. Above this threshold, the onset of time dependent crack growth was observed via a creep void nucleation and coalescence mechanism for triangular and trapezoidal waveforms with a loading frequency of 0.05 Hz, and during sustained loading. An estimate of the threshold for stress assisted grain boundary oxidation (SAGBO) crack growth was calculated to be 23 MPa√m, and oxidized grain boundaries observed near the crack tip were mostly uncracked, suggesting the SAGBO threshold was not reached before the onset of the void nucleation mechanism. A comparison of results across all available studies suggests that a threshold-based transition from cycle- to time-dependent crack growth at 800 °C likely exists. However, the stress intensity factor does not maintain similitude to accurately define a threshold across studies. Thus, gaining an understanding of the crack tip stress states that define the various time dependent mechanisms should be considered in future work.