Abstract

Crack growth investigations were performed on the creep-resistant steel 13 CrMo 4 4 in the fatigue and the creep fatigue regime, especially regarding the influence of creep damage on crack growth. To this effect, 2% creep strain was applied to the material at a temperature of 560°C. The crack propagation rate was determined as a function of the specimen shape, temperature, test frequency and hold times. In the case of compact tension (CT-)specimens, creep pretreatment does not affect crack growth. For center-cracked tension (CCT-)specimens, however, the creep pretreatment results in a considerable increase in the crack propagation rate. Hold times of 90 minutes at maximum loading cause an increase in da/dN due to further cavity nucleation. The hold time at which cavity nucleation might occur is evaluated. The dependency on frequency of crack growth may be evaluated by means of a linear superposition of creep and fatigue crack growth. The transition frequency above which pure fatigue crack growth occurs is calculated and the regimes of fatigue, creep and creep—fatigue interaction with environmental influences are characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.