Abstract

The present study was aimed at predicting the time-dependent deformation of tools used in hot forming applications subjected to the creep-fatigue regime. An excessive accumulated plastic deformation is configured as one of the three main causes of premature failure of tools in these critical applications and it is accumulated cycle by cycle without evident marks leading to noncompliant products. With the aim of predicting this accumulated deformation, a novel procedure was developed, presented, and applied to the extrusion process as an example. A time-hardening primary creep law was used and novel regression equations for the law’s coefficients were developed to account not only for the induced stress-temperature state but also for the dwell-time value, which is determined by the selected set of process parameters and die design. The procedure was validated against experimental data both on a small-scale extrusion die at different stress, temperature, load states, and for different geometries and on an industrial extrusion die which was discarded due to the excessive plastic deformation after 64 cycles. A numerical-experimental good agreement was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.