Hawthorn [Crataegus monogyna Jacq. and Crataegus oxyacantha L.; sin. Crataegus laevigata (Poiret) DC., Rosaceae] leaves, flowers, and berries are used in traditional medicine in the treatment of chronic heart failure, high blood pressure, arrhythmia, and various digestive ailments, as well as geriatric and antiarteriosclerosis remedies. According to European Pharmacopoeia 6.0, hawthorn berries consist of the dried false fruits of these two species or their mixture. The present study was carried out to test free-radical-scavenging, anti-inflammatory, gastroprotective, and antimicrobial activities of hawthorn berries ethanol extract. Phenolic compounds represented 3.54%, expressed as gallic acid equivalents. Determination of total flavonoid aglycones content yielded 0.18%. The percentage of hyperoside, as the main flavonol component, was 0.14%. With respect to procyanidins content, the obtained value was 0.44%. DPPH radical-scavenging capacity of the extract was concentration-dependent, with EC50 value of 52.04 microg/mL (calculation based on the total phenolic compounds content in the extract). Oral administration of investigated extract caused dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. The obtained anti-inflammatory effect was 20.8, 23.0, and 36.3% for the extract doses of 50, 100, and 200 mg/kg, respectively. In comparison to indomethacin, given in a dose producing 50% reduction of rat paw edema, the extract given in the highest tested dose (200 mg/kg) showed 72.4% of its activity. Gastroprotective activity of the extract was investigated using an ethanol-induced acute stress ulcer in rats with ranitidine as a reference drug. Hawthorn extract produced dose-dependent gastroprotective activity (3.8 +/- 2.1, 1.9 +/- 1.7, and 0.7 +/- 0.5 for doses of 50, 100, and 200 mg/kg, respectively), with the efficacy comparable to that of the reference drug. Antimicrobial testing of the extract revealed its moderate bactericidal activity, especially against gram-positive bacteria Micrococcus flavus, Bacillus subtilis, and Lysteria monocytogenes, with no effect on Candida albicans. All active components identified in the extract might be responsible for activities observed.
Read full abstract