Photocatalytic H2 evolution from haloid acid (HX) solution by metal halide perovskites (MHPs) has been intensively investigated; however, the corrosive acid solution severely restricts its practical operability. Therefore, developing acid-free schemes for H2 evolution using MHPs is highly desired. Here, we investigate the photocatalytic anaerobic dehydrogenation of alcohols over a series of MHPs (APbX3, A = Cs+, CH3NH3+ (MA), CH(NH2)2+ (FA); X = Cl-, Br-, I-) to simultaneously produce H2 and aldehydes. Via the coassembly of Pt and rGO nanosheets on MAPbBr3 microcrystals, the optimal MAPbBr3/rGO-Pt reaches a H2 evolution rate of 3150 μmol g-1 h-1 under visible light irradiation (780 nm ≥ λ ≥ 400 nm), which is more than 105-fold higher than pure MAPbBr3 (30 μmol g-1 h-1). The present work not only brings new ample opportunities toward photocatalytic H2 evolution but also opens up new avenues for more effective utilization of MHPs in photocatalysis.
Read full abstract