BackgroundHistone deacetylase 6 (HDAC6) is an emerging target for the treatment and diagnosis of proteinopathies. [18F]FSW-100 was recently developed as a promising brain-penetrating radioligand for HDAC6 PET imaging and the process validation of [18F]FSW-100 radiosynthesis for clinical use is complete, but no detailed synthetic strategy nor process optimisation has been reported. Here, we describe the optimisation of several processes in [18F]FSW-100 radiosynthesis, including the 18F-fluorination reaction, semipurification of the 18F-intermediate, and purification of the product by high-performance liquid chromatography (HPLC), to achieve a radiochemical yield (RCY) adequate for clinical applications of the radioligand. Our findings will aid optimisation of radiosynthesis processes in general.ResultsIn the 18F-fluorination reaction, the amount of copper reagent was reduced without reducing the nonisolated RCY of the intermediate (50%), thus reducing the risk of copper contamination in the product injection solution. Optimising the solid-phase extraction (SPE) conditions for semipurification of the intermediate improved its recovery efficiency. The addition of anti-radiolysis reagents to the mobile phase for the HPLC purification of [18F]FSW-100 increased its activity yield in radiosynthesis using a high [18F]fluoride radioactivity of approximately 50 GBq. The SPE-based formulation method and additives for the injection solution were optimised, and the resulting [18F]FSW-100 injection solution was stable for over 2 h with a radiochemical purity of greater than 95%.ConclusionsOf all the reconsidered processes, we found that optimisation of the SPE-based semipurification of the intermediate and of the mobile phase for HPLC purification in particular improved the RCY of [18F]FSW-100, doubling it compared to that of the original protocol. The radioactivity of [18F]FSW-100 synthesized using the optimized protocol was sufficient for multiple doses for a clinical study.