Abstract

The bipodal compounds [(TMG2biphenN-R)CuI-NCMe](PF6) (R = Me, Ar (4-CF3Ph-)) and [(TMG2biphenN-Me)CuI-I] have been synthesized with ligands that feature a diarylmethyl- and triaryl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The cationic Cu(I) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI = NTs (Ts = tosyl) and a panel of styrenes in MeCN, to afford aziridines, demonstrating comparable reactivity profiles. The copper reagents have been further explored to execute C-H amination reactions with a variety of aliphatic and aromatic hydrocarbons and two distinct nitrene sources PhI = NTs and PhI = NTces (Tces = 2,2,2-trichloroethylsulfamate) in benzene/HFIP (10:2 v/v). Good yields have been obtained for sec-benzylic and tert-C-H bonds of various substrates, especially with the more electron-deficient catalyst [(TMG2biphenN-Ar)CuI-NCMe](PF6). In conjunction with earlier studies, the order of reactivity of these bipodal cationic reagents as a function of the metal employed is established as Cu > Fe > Co ≥ Mn. However, as opposed to the base-metal analogues, the bipodal Cu reagents are less reactive than a similar tripodal Cu catalyst. The observed fluorophilicity of the bipodal Cu compounds may provide a deactivation pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.