Relationships between people in real life are dynamically changed with the interaction process, and due to the heterogeneous preferences, this change is different from person to person. Based on this observation, we propose a new spatial and weighted prisoner's dilemma game model with heterogeneous individuals. Two types of tags, namely, tag-F (concerned about social fairness) and tag-W (concerned about personal well-being), are introduced to describe individuals' different preferences. The link weights indicating the interaction strength between individuals are updated based on different rules that depend on their tags. Through simulations, we verify that a large link weight control factor and a high proportion of tag-F individuals favor the emergence and persistence of cooperation. In addition, an increase in the link weight sensitivity factor favors the evolution of cooperation when the link weight control factor is small. Moreover, while the level of cooperation increases with the proportion of tag-F type in the population, contrary to our intuition, when the population consists entirely of tag-F individuals, in some cases, cooperation cannot reach a higher level compared with the situation when they are mixed with tag-W type. However, at high dilemma intensities, cooperators emerge only when the entire population consists of tag-F type. These results may provide some new insights into the impact of the evolutionary weighted network with heterogeneous preferences on collective cooperative behavior.
Read full abstract