The spatiotemporal distribution of major earthquakes in the study area (1600–2024) is analyzed to tentatively recognize the possible connections with the short-term (from decades to centuries) evolution of the ongoing tectonic processes. This study suggests that during the period considered, seismic activity has been predominantly related to the shortening processes accommodating the convergence of northwestern Nubia with the Iberian and Moroccan plates that mainly involve the westward escape of the Alboran wedge and the NNE-ward escape of the Iberian block. This deformation pattern is inferred from the seismic activity in the North Atlantic domain, the Rif and Betics belts, the western Iberian fault system (onshore and offshore), the Transmoroccan fault system and the Pyrenean thrust front. Seismic activity in the Tell is mainly driven by the Nubia–Eurasia convergence, even though it can be also influenced by the major westward displacements of the Anatolian–Aegean–Adriatic–Pelagian system. This hypothesis could explain the marked increase in seismic activity that occurred in the Tell in the last decades, when that zone may have been affected by the perturbation triggered by the large post-1939 westward displacement of Anatolia. The pieces of evidence and the arguments reported in this study might provide insights into the possible spatial distribution of major earthquakes in the next decades.
Read full abstract