Abstract
The origin and evolution of geological structures reflect lithosphere-asthenosphere interaction in the process of lithospheric plate movement. Mantle diapirs contribute significantly to the sedimentary basins formation in Alpine belt and Caribbean region. Mantle diapirs are the result of density inversion in the asthenosphere–lithosphere system in the periods of tectonomagmatic activations. Increasing heat flow and mantle diapirs on the phone of convergence of Africa and Eurasia in Alpine belt and North and South Americas in Caribbean region produce intercontinental seas in the Cenozoic. The analytical solution of the problem give possibility to find the critical parameters connecting the mantle flow dynamics with surface relief evolution. In Alpine belt, the mantle diapirs form new basins at the final stage of Africa–Eurasia collision in the Cenozoic. In the Caribbean region, great mantle diapir separates the North and South Americas in the Mesozoic, and then the diapir is the source for different smaller diapirs during the convergence of these continents in the Cenozoic. The Gulf of Mexico and Pre-Caspian Depression are connected with mantle diapirs upwelling and have common geological-geophysical features as very rich oil-gas and salt bearing structures. Geodynamics of Alpine belt and the Caribbean region is determined by plume - tectonics on background of plate - tectonics in these regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.