Highly evolved pyrobitumen is an important and realistic object for maturity characterization of ancient and deeply buried organic matter, but measurement of its reflectance is challenging due to its strong optical anisotropy and nano-scale relief. Here we conducted a case study in the Sinian (Ediacaran) Dengying Formation of the Sichuan Basin, China. High-resolution, three-dimensional, morphological imaging by atomic force microscopy (AFM), laser Raman (LRM) spectroscopy, and reflectance studies were conducted on the reservoir pyrobitumen. Our results show that Young’s modulus and adhesion, which are mechanical maturity parameter, provides effective characterization of maturity. The increase in Young’s modulus of pyrobitumen lags that of the vitrinite, given that pyrobitumen is formed by oil cracking and is more hydrogen-rich than vitrinite. A quantitative relationship between Young’s modulus, adhesion and reflectance in bright and dark areas of pyrobitumen was established, which can be used for maturity characterization. The changes in Young’s modulus of the pyrobitumen is related to the condensation of organic matter and directional arrangement of microcrystals. Young’s modulus of organic matter is a robust mechanical maturity index at high organic matter maturity (Ro > 2.0 %), but it is important to pay attention to the influence of anisotropy. Compared to Young’s modulus, adhesion is less affected by anisotropy. The nano-mechanics such as Young’s modulus and adhesion will be new maturity indicator in addition to conventional optical and spectroscopic method. The nano-mechanical properties of organic matter are expected to be applied to maturity indicators and macerals classification in the field of organic petrology in the further research.