Two-dimensional organic-inorganic (2DOI) van der Waals hybrids (vdWhs) have emerged as a groundbreaking subclass of layer-stacked (opto-)electronic materials. The development of 2DOI-vdWhs via systematically integrating inorganic 2D layers with organic 2D crystals at the molecular/atomic scale extends the capabilities of traditional 2D inorganic vdWhs, thanks to their high synthetic flexibility and structural tunability. Constructing an organic-inorganic hybrid interface with atomic precision will unlock new opportunities for generating unique interfacial (opto-)electronic transport properties by combining the strengths of organic and inorganic layers, thus allowing us to satisfy the growing demand for multifunctional applications. Here, this review provides a comprehensive overview of the latest advancements in the chemical synthesis, structural characterization, and numerous applications of 2DOI-vdWhs. Firstly, we introduce the chemistry and the physical properties of the recently rising organic 2D crystals (O2DCs), which feature crystalline 2D nanostructures comprising carbon-rich repeated units linked by covalent/noncovalent bonds and exhibit strong in-plane extended π-conjugation and weak interlayer vdWs interaction. Simultaneously, representative inorganic 2D crystals (I2DCs) are briefly summarized. After that, the synthetic strategies will be systematically summarized, including synthesizing single-component O2DCs with dimensional control and their vdWhs with I2DCs. With these synthetic approaches, the control in the dimension, the stacking modes, and the composition of the 2DOI-vdWhs will be highlighted. Subsequently, a special focus will be given on the discussion of the optical and electronic properties of the single-component 2D materials and their vdWhs, which will be closely relevant to their structures, so that we can establish a general structure-property relationship of 2DOI-vdWhs. In addition to these physical properties, the (opto-)electronic devices such as transistors, photodetectors, sensors, spintronics, and neuromorphic devices as well as energy devices will be discussed. Finally, we provide an outlook to discuss the key challenges for the 2DOI-vdWhs and their future development. This review aims to provide a foundational understanding and inspire further innovation in the development of next-generation 2DOI-vdWhs with transformative technological potential.
Read full abstract