Abstract
Perovskite solar cells (PSCs) have made significant strides in power conversion efficiency (PCE), but their commercialization remains limited by stability issues. Additionally, the high cost of electrodes like gold necessitates the exploration of more affordable alternatives such as carbon (graphene). In this study, we present an approach that combines material dimensionality control and interfacial passivation using post-device treatment with phenethylammonium iodide (PEAI), an organic halide salt, to enhance the efficiency of carbon-based PSCs. Effective defect passivation is key to further improving the PCE and open-circuit voltage (VOC) of PSCs. Our results show that PEAI successfully passivates defects on the perovskite surface, significantly reducing non-radiative recombination. As a result, we achieved carbon-based PSCs with an impressive efficiency of 19.3%, demonstrating excellent stability under maximum power point tracking (MPPT) for over 900 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.