A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG in an n-dimensional torus is isomorphic to a central extension of a cyclic group Zν1×⋯×Zν2l×Tm by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG in a three-torus and apply the representation theory to three examples. We briefly describe a representation theory for a general n-torus. The MTG in an n-torus can be regarded as a generalization of the so-called noncommutative torus.
Read full abstract