We previously have reported that acute or chronic diabetes in animals resulted in altered neurotransmitter levels. In this study, we investigated the concentrations of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in discrete areas of brain viz. striatum (ST), hippocampus (HC), hypothalamus (HT), midbrain (MB), pons medulla (PM), cerebellum (CB) and cerebral cortex (CCX) of control, untreated diabetic and insulin treated diabetic rats after 30 days. Alloxan (45 mg/kg) diabetic untreated rats, which showed hyperglycemia (>250 mg%), revealed significant increases of 5-HT level in ST, MB, PM, CB and CCX and the 5-HIAA level found to be increased significantly in ST, HC and MB. Whereas the insulin treated rats, which was maintained under normal glucose level (80–110 mg%), showed no significant changes in any of the areas studied. The expressions of PKC-α studied by immunoblotting also showed significant changes in ST, HC, MB, PM, CB and CCX that is identical to the changes of both 5-HT and 5-HIAA under similar condition, suggesting that the PKC-α may regulate the synthesis and release of indoleamines in diabetic animals.
Read full abstract