Abstract A transverse ledge climbing robot inspired by athletic locomotion is a customized robot aiming to travel through horizontal ledges in vertical walls. Due to the safety issue and complex configurations in graspable ledges such as horizontal, inclined ledges, and gaps between ledges, existing well-known vision-based navigation methods suffering from occlusion problems may not be applicable to this special kind of application. This study develops a force feedback-based motion planning strategy for the robot to explore and make feasible grasping actions as it continuously travels through reachable ledges. A contact force detection algorithm developed using a momentum observer approach is implemented to estimate the contact force between the robot’s exploring hand and the ledge. Then, to minimize the detection errors due to dynamic model uncertainties and noises, a time-varying threshold is integrated. When the estimated contact force exceeds the threshold value, the robot control system feeds the estimated force into the admittance controller to revise the joint motion trajectories for a smooth transition. To handle the scenario of gaps between ledges, several ledge-searching algorithms are developed to allow the robot to grasp the next target ledge and safely overcome the gap transition. The effectiveness of the proposed motion planning and searching strategy has been justified by simulation, where the four-link transverse climbing robot successfully navigates through a set of obstacle scenarios modeled to approximate the actual environment. The performance of the developed grasping ledge searching methods for various obstacle characteristics has been evaluated.
Read full abstract