Abstract
Estimation of knee contact force (KCF) during gait provides essential information to evaluate knee joint function. Machine learning has been employed to estimate KCF because of the advantages of low computational cost and real-time. However, the existing machine learning models do not adequately consider gait-related data's temporal-dependent, multidimensional, and highly heterogeneous nature. This study is aimed at developing a multisource fusion recurrent neural network to predict the medial condyle KCF. First, a multisource fusion long short-term memory (MF-LSTM) model was established. Then, we developed a transfer learning strategy based on the MF-LSTM model for subject-specific medial KCF prediction. Four subjects with instrumented tibial prostheses were obtained from the literature. The results showed that the MF-LSTM model could predict medial KCF to a certain high level of accuracy (the mean of ρ = 0.970). The transfer learning model improved the prediction accuracy (the mean of ρ = 0.987). This study shows that the MF-LSTM model is a powerful and accurate computational tool for medial KCF prediction. Introducing transfer learning techniques could further improve the prediction performance for the target subject. This coupling strategy can help clinicians accurately estimate and track joint contact forces in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.