A linearized system of equations of hydrodynamics with time-dependent spatially localized right-hand side placed both on the free surface (and on the bottom of the basin) and also in the layer of the liquid is considered in a layer of variable depth with a given basic plane-parallel flow. A method of constructing asymptotic solutions of this problem is suggested; it consists of two stages: (1) a reduction of the three-dimensional problem to a two-dimensional inhomogeneous pseudodifferential equation on the nonperturbed free surface of the liquid, (2) a representation of the localized right-hand side in the form of a Maslov canonical operator on a special Lagrangian manifold and the subsequent application of a generalization to evolution problems of an approach, which was recently suggested in the paper [A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and M. Rouleux, Dokl. Ross. Akad. Nauk 475 (6), 624–628 (2017); Engl. transl.: Dokl. Math. 96 (1), 406–410 (2017)], to solving stationary problems with localized right-hand sides and its combination with “nonstandard” characteristics. A method of calculation (generalizing long-standing results of Dobrokhotov and Zhevandrov) of an analog of the Kelvin wedge and the wave fields inside the wedge and in its neighborhood is suggested, which uses the consideration that this method is the projection to the extended configuration space of a Lagrangian manifold formed by the trajectories of the Hamiltonian vector field issuing from the intersection of the set of zeros of the extended Hamiltonian of the problem with conormal bundle to the graph of the vector function defining the trajectory of motion of an equivalent source on the surface of the liquid.