Abstract

We give a conjectural formula for sheaves supported on (irreducible) conormal varieties inside the cotangent bundle of the Grassmannian, such that their equivariant K-class is given by the partition function of an integrable loop model, and furthermore their K-theoretic pushforward to a point is a solution of the level 1 quantum Knizhnik–Zamolodchikov equation. We prove these results in the case that the Lagrangian is smooth (hence is the conormal bundle to a subGrassmannian). To compute the pushforward to a point, or equivalently to the affinization, we simultaneously degenerate the Lagrangian and sheaf (over the affinization); the sheaf degenerates to a direct sum of cyclic modules over the geometric components, which are in bijection with plane partitions, giving a geometric interpretation to the Razumov–Stroganov correspondence satisfied by the loop model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.