In conventional multi-cylinder drying of paper and board, both conductive drying from steam-heated dryer cylinders and convective drying by flowing air over the paper surface in the pockets are used. Conductive drying from steam-heated drying cylinders is a critical component in providing the necessary thermal energy to paper and board as they dry. Steam temperature and internal and external resistances at the contacting surface are critical process parameters influencing the conductive drying process. An experimental setup was developed to study the alternating conductive and convective drying of paper and board. Paper sheet moisture, temperature, and temperature distribution within the heated platen and the instantaneous heat flux as the sheet was being dried were measured. The instantaneous heat flux, contact heat transfer coefficient, and drying rates were determined as drying proceeds. Experimental results, as well as comparisons to literature and commercial data, are presented. The conductive heat transfer coefficients determined were compared to traditional correlations normally used in the modeling of paper drying. Similarly, the convective heat and mass transfer coefficients are also determined and compared to literature data. In addition to the evaluation of alternating conductive and convective drying characteristics of paper and board, the potential inclusion of auxiliary energy components will also be included. Experimental results from the conduction and convection drying system are presented. This data will be useful in process development, intensification of manufacturing processes, and modeling and simulation of paper drying processes.
Read full abstract