Abstract
ABSTRACTIn this paper, the heat transfer characteristics of a 2D gas–solid spout fluidized bed with a hot gas jet are investigated using computational fluid dynamics-discrete element method. The initial temperature of the background gas and particles in the spouted bed was set to 300 K. The particle temperature distribution after injection of 500 K gas from the bottom, center of the bed, is presented. The simulation results indicate well heat transfer behavior in the bed. Then, statistical analysis is conducted to investigate the influence of inlet gas velocity and particle thermal conductivity on the heat transfer at particle scale in detail. The results indicate that the particle mean temperature and convective heat transfer coefficient (HTC) linearly increase with the increase in inlet gas velocity, while the conductive HTC and the uniformity of particle temperature distribution are dominated by the particle thermal conductivity. The conductive and convective heat transfer play different roles in the spout fluidized bed. These results should be useful for the further research in such flow pattern and the optimization of operating such spouted fluidized beds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.