By means of coordinate transformation and the volume-of-fluid-level set multiphase flow method, a three-dimensional multiphase numerical model is established to simulate a Marangoni self-driven object. The forces on the Marangoni self-driven object are discussed as the driving force, viscous resistance, and pressure resistance. A typical disk-shaped, Marangoni self-driven object driven by the diffusion of camphor from its tail to water is utilized to perform a numerical study. Its motion evolution and force change in the whole process are represented quantitatively alongside the flow field and camphor concentration distribution in the flow domain. Meanwhile, the influence of Marangoni convection, which is induced by camphor diffusion at the moving gas–liquid interface, on surfer motion is surveyed. The results presented in this work can improve understanding of self-driven Marangoni propulsion since self-driven object motion and fluid movement details are difficult to acquire experimentally.
Read full abstract