This paper investigates the mechanical response of coral sand under particle breakage using a hierarchical multiscale model combining the discrete element method (DEM) and the finite element method (FEM). This DEM-FEM model links the microscopic interaction mechanisms to macroscopic phenomena such as strain localization and failure. A cohesive contact model was first utilized to simulate compaction bands in the DEM and construct a cohesive assembly with smaller particles distributed around a larger particle to better simulate the grinding and angular breakage of coral sand. A representative volume element (RVE) that includes particle breakage was then constructed and analyzed under periodic boundary conditions. DEM analysis was performed, and the results were compared with triaxial compression test data obtained from the literature, demonstrating that the constructed RVE effectively represents the mechanical properties of coral sand. The constructed RVE was used for hierarchical multiscale simulations, which showed good agreement with existing triaxial testing of coral sand. Finally, by setting a larger cohesive force, the constructed coral sand particles were prevented from breakage, and comparative analysis revealed that particle breakage weakens the mechanical properties of coral sand. Furthermore, different shapes of coral sand particles were constructed, and RVE and hierarchical multiscale simulations of triaxial tests were performed. The results indicated that the triaxial tests of long strip-shaped coral sand particles exhibit higher peak values compared to spherical coral sand particles. Additionally, a double porosity model of coral sand was constructed to analyze the impact of internal porosity on soil mechanical properties. The results showed that the presence of internal porosity significantly weakened the mechanical properties of coral sand. These findings highlight the significant impact of particle breakage and shape on the mechanical behavior of coral sand, offering important insights for engineering applications.
Read full abstract