Abstract
The compression and shear behavior of reconstituted clay are closely related to the initial water content of the reconstituted soil. It is difficult to obtain the compression and shear test data of clay with a high initial water content. This study aims to propose a model to predict the compression deformation and strength characteristics of reconstituted clay prepared with any initial water content using less data. Based on the concept of the disturbed state, this paper establishes a mathematical model that can simulate the compression and triaxial shear characteristics of reconstituted clay with different initial water contents. This model uses three compression curves of reconstituted clay with different initial water contents to calibrate the model parameters, and can predict the compression deformation characteristics of reconstituted clay prepared with any initial water content. The model can simulate the consolidated undrained shear behavior of clay reconstituted with different initial water contents. Comparing the measured data shows that the model is in good agreement with the measured compression curve and the triaxial stress–strain curve. The error of the predicted pore ratio and test pore ratio before yield is within 5%, and the error of the predicted pore ratio and test pore ratio after yield is within 10%. The stress–strain relationship of clay hardening with different water contents can be captured. The model can provide a preliminary prediction for the mechanical properties of clay with a high initial water content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.