This paper presents the design of a new flexure-based xy micropositioning stage with a large hollow platform, which is suitable for practical use with a microscope. The designed mechanism has a parallel-kinematic structure and is actuated by two voice coil motors. By employing multistage compound parallelogram flexures, the stage is designed as a four-layer structure, which produces a motion output platform with a large hollow space and large range of motion. Analytical modeling was carried out for parametric design of the stage. Evaluation results show that the designed xy stage exhibits a large safety factor and high natural frequency. Moreover, the large hollow platform is well-suited for practical applications with a microscope.
Read full abstract