In this paper, high-order compact difference method is used to solve the one-dimensional nonlinear advection diffusion reaction equation. The nonlinearity here is mainly reflected in the advection and reaction terms. Firstly, the diffusion term is discretized by using the fourth-order compact difference formula, the nonlinear advection term is approximated by using the fourth-order Padé formula of the first-order derivative, and the time derivative term is discretized by using the fourth-order backward differencing formula. An unconditionally stable five-step fourth-order fully implicit compact difference scheme is developed. This scheme has fourth-order accuracy in both time and space. Secondly, for the calculations of the start-up time steps, the time derivative term is discretized by the Crank-Nicolson method, and Richardson extrapolation formula is used to improve the accuracy in time direction from the second-order to the fourth-order. Thirdly, convergence and stability of the difference scheme in H1 seminorm, L∞ and L2 norms, existence and uniqueness of the numerical solutions are proved, respectively. Fourthly, the Thomas algorithm is used to solve the nonlinear algebraic equations at each time step, and a time advancement algorithm with linearized iteration strategy is established. Finally, the accuracy, stability and efficiency of the present approach are verified by some numerical experiments.
Read full abstract