This study aims to investigate the diagnostic value of multi-modal magnetic resonance imaging (MRI) utilizing arterial spin labeling (ASL), quantitative susceptibility mapping (QSM), and 3D T1-weighted imaging (3DT1WI) in patients with Parkinson's disease (PD). Additionally, it evaluates the relationship between MRI findings and non-motor symptoms associated with PD. ASL, QSM, and 3DT1WI scans were performed on 48 PD patients and 46 healthy controls (HC). We extracted and analyzed differences in regional cerebral blood flow (rCBF), magnetic susceptibility, and gray matter density parameters between the two groups. These MRI parameters were correlated with clinical scale scores assessing non-motor symptoms, including cognitive function, sleep quality, olfaction, autonomic function, anxiety, depression, and fatigue. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic accuracy of each imaging modality in distinguishing PD from HC. The areas under the ROC curve (AUC) for rCBF, magnetic susceptibility, and gray matter density were 0.941, 0.979, and 0.624, respectively. In PD patients, a negative correlation was found between Unified Parkinson's Disease Rating Scale Part II (UPDRS II) scores and rCBF in the bilateral precuneus. The Pittsburgh Sleep Quality Index (PSQI) scores negatively correlated with rCBF in the left middle temporal gyrus and right middle occipital gyrus. Hamilton Depression Rating Scale (HAMD) scores positively correlated with QSM values in the right supplementary motor area, while scores on the Argentine Smell Identification Test (AHRS) negatively correlated with QSM values in the same area. Disease duration showed a positive correlation with QSM values in the right middle cingulate gyrus. Additionally, PSQI scores positively correlated with QSM values in the left middle cingulate gyrus, and fatigue severity scale (FSS) scores also positively correlated with QSM values in the left middle cingulate gyrus. Gray matter atrophy in the left inferior temporal gyrus was associated with cognitive impairment in PD. Occipital hypoperfusion and cortical atrophy in the left inferior temporal gyrus may serve as novel imaging biomarkers for PD and are associated with sleep disturbances and cognitive impairment in PD patients. Extensive iron deposition in the bilateral cerebral cortex of PD patients may be a contributing factor to non-motor symptoms such as sleep disturbances and fatigue. Multimodal imaging techniques, including ASL, QSM, and 3DT1WI, can enhance the diagnostic accuracy for PD.
Read full abstract