Abstract

Previous studies investigated CSF levels of α-synuclein (α-syn), amyloid-β (Aβ1-42), total tau (t-tau), and phosphorylated tau (p-tau) with clinical progression of Parkinson's disease (PD). However, there is limited data on the association between CSF biomarkers and dopamine uptake status in PD. In the current study, we aim to investigate the longitudinal association between striatal dopaminergic neuronal loss assessed by dopamine active transporter single photon emission computerized tomography (DaTSCAN) imaging with CSF α-syn, t-tau, p-tau, and Aβ1-42. A total of 413 early-stage PD patients and 187 healthy controls (HCs) from the PPMI. Striatal binding ratios (SBRs) of DaTSCAN images in caudate and putamen nuclei were calculated. We investigated the cross-sectional and longitudinal association between CSF biomarkers and dopamine uptake using partial correlation models adjusted for the effect of age, sex, and years of education over 24months of follow-up. The level of CSF α-syn, Aβ1-42, t-tau, and p-tau was significantly higher in HCs compared to PD groups at any time point. We found that higher CSF α-syn was associated with a higher SBR score in the left caudate at baseline (P = 0.038) and after 12months (P = 0.012) in PD patients. Moreover, SBR scores in the left caudate and CSF Aβ1-42 were positively correlated at baseline (P = 0.021), 12months (P = 0.006), and 24months (P = 0.014) in patients with PD. Our findings demonstrated that change in CSF Aβ1-42 was positively correlated with change in SBR score in the left caudate after 24months in the PD group (P = 0.043). We found that cross-sectional levels of α-syn and Aβ1-42 could reflect the degree of dopaminergic neuron loss in the left caudate nucleus. Interestingly, longitudinal changes in CSF Aβ1-42 could predict the severity of left caudal dopaminergic neuron loss throughout the disease. This suggested that Aβ pathology might precede dopaminergic loss in striatal nuclei in this case left caudate and subsequently cognitive impairment in PD patients, although future studies are needed to confirm our results and expand the understanding of the pathophysiology of cognitive dysfunction in PD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.