The traditional automotive catalytic converter using commercial ceramic honeycomb carriers has many problems such as high back pressure, low engine efficiency, and high usage of precious metals. This study proposes a four-channel catalytic micro-reactor based on alumina hollow fiber membrane, which uses phase inversion method for structural molding and regulation. Due to the advantages of its carrier, it can achieve lower ignition temperature under low noble metal loading. With Pd/CeO2 at a loading rate of 2.3% (mass), the result showed that the reaction ignition temperature is even less than 160 °C, which is more than 90 °C lower than the data of commercial ceramic substrates under similar catalyst loading and airspeed conditions. The technology in turn significantly reduces the energy consumption of the reaction. And stability tests were conducted under constant conditions for 1000 hours, which proved that this catalytic converter has high catalytic efficiency and stability, providing prospects for the design of innovative catalytic converters in the future.