Abstract

The synthesis of Pt nanoparticles and catalytically active materials using the electrochemical top-down approach involves dispersing Pt electrodes in an electrolyte solution containing alkali metal cations and support material powder using an alternating pulsed current. Platinum is dispersed to form particles with a predominant crystallographic orientation of Pt(100) and a particle size of approximately 7.6±1.0 nm. The dispersed platinum particles have an insignificant content of PtOx phase (0.25±0.03 wt.%). The average formation rate was 9.7±0.5 mg cm−2 h−1. The nature of the support (carbon material, metal oxide, carbon-metal oxide hybrid) had almost no effect on the formation rate of the Pt nanoparticles as well as their crystallographic properties. Depending on the nature of the support material, Pt-containing catalytic materials obtained by the electrochemical top-down approach showed good functional performance in fuel cell technologies (Pt/C), catalytic oxidation of CO (Pt/Al2O3) and electrochemical oxidation of methanol (Pt/TiO2-C) and ethanol (Pt/SnO2-C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.