Abstract Reducing the uncertainty in predictions of future climate change is one of today’s greatest scientific challenges, with many significant problems unsolved, including the relationship between pCO2 and global temperature. To better constrain these forecasts, it is meaningful to study past time intervals of global warmth, such as the Eocene (56.0–33.9 Ma), serving as climatic analogues for the future. Here we reconstructed pCO2 using the stomatal densities of a large fossil Lauraceae (laurel) leaf database from ten sites across the Eocene of Australia and New Zealand. We show that mostly moderate pCO2 levels of ∼450–600 ppm prevailed throughout the Eocene, levels that are considerably lower than the pCO2 forcing currently needed to recreate Eocene temperatures in climate models. Our data record significantly lower pCO2 than inferred from marine isotopes, but concur with previously published Northern Hemisphere Eocene stomatal proxy pCO2. We argue that the now globally consistent stomatal proxy pCO2 record for the Eocene is robust and that climate sensitivity was elevated and/or that additional climate forcings operated more powerfully than previously assumed.