Abstract In this paper, a new method to analytically carry out the exterior elastic fields of a class of non-elliptical inclusions, i.e., those characterized by Laurent polynomials, is developed. Two complex variable fields, which exactly characterize the Eshelby’s tensor, are explicitly achieved for the hypocycloidal and the quasi-parallelogram inclusions. Numerical examples show that the exterior fields near the inclusion are dominated by the boundary shape, but the fields far away from the inclusion tend to be convergent and can be well approximated by those of its equivalent circular/elliptical inclusion. These solutions are firstly reported, and largely make up for the deficiency in the list of the analytical results of non-elliptical inclusions in 2D isotropic elasticity.
Read full abstract