Abstract

Sweeping processes are a class of evolution differential inclusions arising in elastoplasticity and were introduced by J.J. Moreau in the early seventies. The solution operator of the sweeping processes represents a relevant example of rate independent operator. As a particular case we get the so called play operator, which is a typical example of a hysteresis operator. The continuity properties of these operators were studied in several works. In this note we address the continuity with respect to the strict metric in the space of functions of bounded variation with values in the metric space of closed convex subsets of a Hilbert space. We provide counterexamples showing that for all BV-formulations of the sweeping process the corresponding solution operator is not continuous when its domain is endowed with the strict topology of BV and its codomain is endowed with the L1-topology. This is at variance with the play operator which has a BV-extension that is continuous in this case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.