Antibiotic pollution has become a global environmental pollution problem. Chlorophyll fluorescence is one of the most important indicators reflecting the degree to which plants are influenced by the environment. Ofloxacin (OFL) is a highly toxic antibiotic pollutant, and there are few reports on the effects of changes in OFL levels on tomato chlorophyll fluorescence parameters. In this study, we investigated the responses of tomato growth, photosynthetic activity and chlorophyll fluorescence kinetics to exogenous OFL exposure (as the concentrations of 0, 2.5, 5, 10 and 20 mg L−1). The results showed that lower concentrations of OFL (2.5 mg L−1) had little impact on tomato growth, while plant growth was inhibited with the OFL concentration increasing. At higher OFL concentrations (5, 10 and 20 mg L−1), chloroplasts ruptured, and chlorophyll became degraded, resulting in leaf etiolation. Furthermore, the photosynthetic and photochemical efficiency and electron transfer rate were significantly inhibited by OFL. Moreover, damage to the oxygen-evolving complex on the donor side of PSⅡ prevented electron transfer from QA to QB and led to photoinhibition. In conclusion, higher OFL concentration reduced photosynthesis by destroying the photosynthetic mechanism in tomato, resulting in tomato leaf etiolation and plant growth inhibition.
Read full abstract