Abstract

Photosystem II efficiency is the most important aspect of stress physiology to keep photosynthetic momentum operative under stress conditions. In the last few decades effect of priming on the germination growth and physiology of plants were highlighted. Profiling energy compartmentalization in PSII using chlorophyll fluorescence kinetics and specific energy fluxes of primed seeds and plants has not been documented. It is crucial to discover the changes associated with the light-harvesting complexes, PSII functionality, and photochemical modulations occurring in the biochemical thylakoid membrane in response to priming and salt stress. The present study mainly focuses on photosystem II efficiency leading to physiological tolerance by seed priming. We grow the plants after seed priming with the solution of sodium chloride (75 and 150 mM), salicylic acid (1 and 2 mM), and calcium chloride (34 mM) and nitrate (20 mM). All the primed plants were subjected to salt stress 10 days after germination @ 0, 75, and 150 mM NaCl. Later germination, growth, morphology, physiology, PS II functionality and photochemical yield were evaluated. NaCl priming did more promising effects on energy compartmentalization, light-harvesting ability, and specific energy fluxes of photosystem II compared to salicylic acid and calcium salts under a stress environment. Maximum quantum yield (FV/FM), active reaction centers with higher efficiency of water splitting complex (FV/FO), restored electron flow, higher photochemical quenching (qP), oxygen evolution (SMT-phase), and almost negligible heat dissipation are associated with better osmotic adjustment and higher water uptake (RWC) under stress condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call