Water quality monitoring of reservoirs is currently a significant challenge in the tropical regions of the world due to limited monitoring stations and hydrological data. Remote sensing techniques have proven to be a powerful tool for continuous real-time monitoring and assessment of tropical reservoirs water quality. Although many studies have detected chlorophyll-a (Chl-a) concentrations as a proxy to represent nutrient contamination, using Sentinel 2 for eutrophic or hypereutrophic inland water bodies, mainly reservoirs, minimal efforts have been made for oligotrophic and mesotrophic reservoirs. The present study aimed to develop a modeling framework to map and estimate spatio-temporal variability of Chl-a levels and associated water spread using the Modified Normalized Difference Water Index (MNDWI) and Maximum Chlorophyll Index (MCI). Moreover, the impact of land use/land cover type of the contributing watershed in the oligo-mesotrophic reservoir, Bhadra (tropical reservoir), for 2018 and 2019 using Sentinel 2 satellite data was analyzed. The results show that the water spread area was higher in the post-monsoon months and lower in the summer months. This was further validated by the correlation with reservoir storage, which showed a strong relationship (R2 = 0.97, 2018; R2 = 0.93, 2019). The estimated Chl-a spread was higher in the winter season, because the reservoir catchment was dominated by deciduous forest, producing a large amount of leaf litter in tropical regions, which leads to an increase in the level of Chl-a. It was found that Chl-a spread in the reservoir, specifically at the inlet sources and near agricultural land practices (western parts of the Bhadra reservoir). Based on the findings of this study, the MCI spectral index derived from Sentinel 2 data can be used to accurately map the spread of Chl-a in diverse water bodies, thereby offering a robust scientific basis for effective reservoir management.
Read full abstract