Abstract
Accurate prediction of future chlorophyll-a (Chl-a) concentrations is of great importance for effective management and early warning of marine ecological systems. However, previous studies primarily focused on chlorophyll-a inversion and reconstruction, while methods for predicting Chl-a concentrations remain limited. To address this issue, we adopted four deep learning approaches, including Convolutional LSTM Network (ConvLSTM), Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Eidetic 3D LSTM (E3D-LSTM), and Self-Attention ConvLSTM (SA-ConvLSTM) models, to predict Chl-a over the Yellow Sea and Bohai Sea (YBS) in China. Furthermore, 14 environmental variables obtained from the remote sensing data of Moderate-resolution Imaging Spectroradiometer (MODIS) and ECMWF Reanalysis v5 (ERA5) were utilized to predict the Chl-a concentrations in the study area. The results showed that all four models performed satisfactorily in predicting Chl-a concentrations in the YBS, with SA-ConvLSTM exhibiting a closer approximation to true values. Furthermore, we analyzed the impact of the Self-Attention Memory Module (SAM) on the prediction results. Compared to the ConvLSTM model, the SA-ConvLSTM model integrated with the SAM module better captured subtle large-scale variations within the study area. The SA-ConvLSTM model exhibited the highest prediction accuracy, and the one-month Pearson correlation coefficient reached 0.887. Our study provides an available approach for anticipating Chl-a concentrations over a large area of sea.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.