Abstract

The drifting process of U. prolifera were simulated in a large-volume flowing water system with conditions similar to the field in the Yellow Sea. Biomass and chl-a content per unit of U. prolifera were monitored in the flowing water system by simulating nutrients and temperature variations of seawaters from starting place to terminus of U. prolifera in the South Yellow Sea. According to the variations of nutrients during the drifting process, the floating process can be divided into three stages. Differentially expressed genes and differential metabolites in the three stages of U. prolifera drifting process were identified, which are mainly related to glycometabolism, nitrogen metabolism, and selenium compound metabolism. The process from Stage I to Stage II are mainly related to the translation and molecular function of biological processes, and the main differential metabolites are primary metabolites, whereas, from Stage II to Stage III, secondary metabolites start to increase, indicating that U. prolifera resisted environmental stress by increasing lipids and producing secondary metabolites. It will provide some guidance for the comprehensive interpretation of the biological basis and ecological mechanisms of the large-scale U. prolifera green tides in the Yellow Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call