This paper presents an ultra-small absolute pressure sensor with a silicon-micromachined TSV backside interconnection for high-performance, high spatial resolution contact pressure sensing, including flexible-substrate applications. By exploiting silicon-micromachined TSVs that are compatibly fabricated with the pressure sensor, the sensing signals are emitted from the chip backside, thereby eliminating the fragile leads on the front-side. Such a design achieves a flat and fully passivated top surface to protect the sensor from mechanical damage, for reliable direct-contact pressure sensing. A single-crystal silicon beam-island structure is designed to reduce the deflection of the pressure-sensing diaphragm and improve output linearity. Using our group-developed microholes interetch and sealing (MIS) micromachining technique, we fabricated ultra-small piezoresistive pressure sensors with the chip size as small as 0.4 mm × 0.6 mm, in which the polysilicon-micromachined TSVs transfer the signal interconnection from the front-side to the backside of the wafer, and the sensor chips can be densely packaged on the flexible substrate via the TSVs. The ultra-small pressure sensor has high sensitivity of 0.84 mV/kPa under 3.3 V of supply voltage and low nonlinearity of ±0.09% full scale (FS) in the measurement range of 120 kPa. The proposed pressure sensors with backside-interconnection TSVs hold promise for tactile sensing applications, including flexible sensing of wearable wristwatches.
Read full abstract