Following the trends of Chinese rural transformation development, and the sustainable development goals for resources and environment, reasonable arranging the potential development space and the ecological space, so as to optimize the distributions of rural settlement would be the key challenge for rural areas in ecologically fragile regions. From the perspective of maintaining regional ecological security, this paper takes Da’an City, a typical ecological fragile region in Jilin Province, as the case area, constructing the comprehensive ecological security pattern (ESP) on basis of landscape ecology, and applying the landscape pattern indexes to quantitative analysis the spatial distribution characteristics of rural settlements. Then, different optimization directions and management strategies are put forward for rural settlements in each secure zone under the comprehensive ESP. The experimental results showed that 1) the area of the low security zone, the general security zone, the moderate security zone and the extreme security zone was 1570.18 km2, 1463.36 km2, 1215.80 km2 and 629.77 km2, representing 32.18%, 29.99%, 24.92% and 12.91% of the total area of the target area, respectively. 2) The rural settlements in Da’an City were characterized by a high degree of fragmentation with a large number of small-scale patches. 3) The area of rural settlements in the ecological relocation zone, the in situ remediation zone, the limited development zone and the key development zone was 22.80 km2, 42.31 km2, 36.28 km2 and 19.40 km2, accounting for 18.88%, 35.03%, 30.04% and 16.06% of the total area of rural settlements, respectively. Then, different measures were proposed for settlements in different optimization zones in order to scientifically plan important ecological space, production space and living space in rural areas. This paper aims to provide fundamental support for rural settlements based on redistribution from the perspective of landscape ecology and provide insights for rural planning and rural habitat environmental improvement.
Read full abstract